Ethylmethylhydroxypyridine Succinate Limits Stress-Induced Neuroinflammation in the Cerebral Cortex of Old Rats

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the aging and the development of age-associated diseases, the trigger mechanism is the hyperactivation of the hypothalamic-pituitary-adrenal neuroendocrine axis, hypersecretion of glucocorticoids, which, under excessive and long-term stimulation, have inflammatory and degenerative effects. Chronic stress exacerbates glucocorticoid-dependent atrophic changes in the aging brain, increases neuroinflammation and neurological dysfunction, and is a key risk factor for Alzheimer’s disease. In the correction of aseptic neuroinflammation in elderly and senile patients, the use of anti-inflammatory agents that exhibit anti-glucocorticoid (pro-anabolic) and anti-glutamate (anti-excitotoxic) effects is pathogenetically justified. Succinate/SUCNR1 signalling is involved in the development of immunomodulatory, trophic, and antihypoxic effects; however, its role in the mechanisms of the stress response remains unexplored. The aim of this study was to assay the impact of succinate/SUCNR1 signalling on the development of stress-induced neuroinflammation in the cerebral cortex of old rats. The work was performed on outbred albino male rats at the age of 18 months. Chronic restraint stress was modelled by immobilizing animals in individual plastic cases for 6 h daily for 5 days. Mexidol (2-ethyl-6-methyl-3-hydroxypyridine (EMHP) succinate) was used as a form of succinate that crosses the blood-brain barrier. Mexidol was administered intraperitoneally to old rats at a dose of 100 mg/kg daily for 5 days 15 min before the onset of stress. The levels of proinflammatory cytokines (IL-1β, TNF-α), anti-inflammatory cytokines (TGF-β1, IL-10), glucocorticoid receptors (GRα), transcriptional coactivator PGC-1α, succinate receptor SUCNR1/GPR91, and vascular endothelial growth factor (VEGF) were determined by immunoblotting in cerebral cortex (CC) samples. It was shown that chronic immobilization stress caused an increase in the level of IL-1β and TNF-α during stress, which was accompanied by a decrease in the content of anti-inflammatory cytokines, SUCNR1, GRα, PGC-1α. The course administration of EMHP succinate limited the development of stress-induced neuroinflammation in the CC of old rats and prevented a decrease in the levels of SUCNR1, IL-10, TGF-β1, PGC-1α, and GRα. The study reveals for the first time the stress-protective potential of succinate/SUCNR1 signalling in the brain of old rats associated with the activation of PGC-1α-dependent anti-inflammatory mechanisms under conditions of chronic stress.

About the authors

O. L. Terekhina

Research Institute of General Pathology and Pathophysiology

Email: bioenerg@mail.ru
Russia, 125315, Moscow

Y. I. Kirova

Research Institute of General Pathology and Pathophysiology

Author for correspondence.
Email: bioenerg@mail.ru
Russia, 125315, Moscow

References

  1. Franceschi C., Campisi J. 2014. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69 (S1), S4–S9.
  2. Thompson M.E., Fox S.A., Berghanel A., Sabbi K.H., Phillips-Garcia S., Enigk D.K., Otali E., Machanda Z.P., Wrangham R.W., Muller M.N. 2020. Wild chimpanzees exhibit humanlike aging of glucocorticoid regulation. Proc. Natl. Acad. Sci. USA. 117 (15), 8424–8430.
  3. Canet G., Chevallier N., Zussy C., Desrumaux C., Givalois L. 2018. Central role of glucocorticoid receptors in Alzheimer’s disease and depression. Front. Neurosci. 12, 739.
  4. Choi G.E., Han H.J. 2021. Glucocorticoid impairs mitochondrial quality control in neurons. Neurobiol. Dis. 152, 105301.
  5. Logie J.J., Ali S., Marshall K.M., Heck M.M.S., Walker B.R., Hadoke P.W.F. 2010. Glucocorticoid-mediated inhibition of angiogenic changes in human endothelial cells is not caused by reductions in cell proliferation or migration. PLoS One. 5 (12), e14476.
  6. Tse Y.C., Bagot R.C., Wong T.P. 2012. Dynamic regulation of NMDAR function in the adult brain by the stress hormone corticosterone. Front. Cell. Neurosci. 6 (9), 1–14.
  7. Sugama S., Kakinuma Y. 2020. Stress and brain immunity: microglial homeostasis through hypothalamus-pituitary-adrenal gland axis and sympathetic nervous system. Brain Behav. Immun. Health. 7, 100111.
  8. Saito K., Cui H. 2018. Emerging roles of estrogen-related receptors in the brain: Potential interactions with estrogen signaling. Int. J. Mol. Sci. 19 (4), 1091.
  9. Arbo B.D., Schimith L.E., Santos M.G., Hort M.A. 2022. Repositioning and development of new treatments for neurodegenerative diseases: Focus on neuroinflammation. Eur. J. Pharmacol. 919, 174800.
  10. Grygiel-Gorniak B. 2014. Peroxisome proliferator-activated receptors and their ligands: Nutritional and clinical implications – a review. Nutr. J. 13 (1), 17.
  11. Perretti M., Leroy X., Bland E.J., Montero-Melendez T. 2015. Resolution pharmacology: Opportunities for therapeutic innovation in inflammation. Trends Pharmacol. Sci. 36 (11), 737–755.
  12. Krzak G., Willis C.M., Smith J.A., Pluchino S., Peruzzotti-Jametti L. 2021. Succinate receptor 1: An emerging regulator of myeloid cell function in inflammation. Trends Immunol. 42 (1), 45–58.
  13. Lukyanova L.D., Kirova Y.I. 2015. Mitochondria-controlled signalling mechanisms of brain protection in hypoxia. Front. Neurosci. 9, 320.
  14. Trauelsen M., Hiron T.K., Lin D., Petersen J.E., Breton B., Husted A.S. 2021. Extracellular succinate hyperpolarizes M2 macrophages through SUCNR1/GPR91-mediated Gq signaling. Cell Rep. 35 (11), 109246.
  15. Harber K.J., Goede K.E., Verberk S.G.S., Meinster E., Vries H.E., Weeghel M., Winther M.P.J., Bossche J.V. 2020. Succinate is an inflammation-induced immunoregulatory metabolite in macrophages. Metabolites. 10 (9), 372.
  16. Hamel D., Sanchez M., Duhamel F., Roy O., Honore J.C., Noueihed B., Zhou T., Nadeau-Vallee M., Hou X., Lavoie J.C., Mitchell G., Mamer O.A., Chemtob S. 2014. G-protein–coupled receptor 91 and succinate are key contributors in neonatal postcerebral hypoxia-ischemia recovery. Arterioscler. Thromb. Vasc. Biol. 34 (2), 285–293.
  17. Кирова Ю.И., Шакова Ф.М., Германова Э.Л., Романова Г.А., Воронина Т.А. 2020. Влияние Мексидола на церебральный митохондриогенез в молодом возрасте и при старении. Журн. невр. и психиатр. им. С.С. Корсакова. 120 (1), 62–69.
  18. Cherif H., Duhame F., Cecyre B., Bouchard A., Quintal A., Chemtob S., Bouchard J.F. 2018. Receptors of intermediates of carbohydrate metabolism, GPR91 and GPR99, mediate axon growth. PLoS Biol. 16 (5), e2003619.
  19. Jin Y., Zhang S.S. 1980. The inhibitory effect of succinic acid on the central nervous system. Yao Xue Xue Bao. 15 (12), 761–763.
  20. Yue W., Liu Y.X., Zang D.L., Zhou M., Zhang F., Wang L. 2002. Inhibitory effects of succinic acid on chemical kindling and amygdale electrical kindling in rats. Acta Pharmacol. Sin. 23 (9), 847–850.
  21. Chen S.W., Xin Q., Kong W.X., Min L., Li J.F. 2003. Anxiolytic-like effect of succinic acid in mice. Life Sci. 73 (25), 3257–3264.
  22. Kirova Y.I., Shakova F.M., Voronina T.A. 2021. Ethylmethylhydroxypyridine succinate induces anti-inflammatory polarization of microglia in the brain of aging rat. Biochem. Cell Biol. 15 (4), 356–364.
  23. Кирова Ю.И., Терехина О.Л., Шакова Ф.М. 2022. Морфофункциональные особенности астроцитов и микроглии в мозге стареющих крыс при курсовом применении этилметилгидроксипиридина сукцината. Пат. физиол. и эксп. тер. 66 (1), 4–16.
  24. Atrooz F., Alkadhi K.A., Salim S. 2021. Understanding stress: Insights from rodent models. Curr. Res. Neurobiol. 2, 100013.
  25. Baghirova S., Hughes B.G., Hendzel M.J., Schulz R. 2015. Sequential fractionation and isolation of subcellular proteins from tissue or cultured cells. MethodsX. 2, 440–445.
  26. Niraula A., Sheridan J.F., Godbout J.P. 2017. Microglia priming with aging and stress. Neuropsychopharmacology. 42 (1), 318–333.
  27. Bereshchenko O., Bruscoli S., Riccardi C. 2018. Glucocorticoids, sex hormones, and immunity. Front. Immunol. 9, 1332.
  28. Madalena K.M., Lerch J.K. 2017. The effect of glucocorticoid and glucocorticoid receptor interactions on brain, spinal cord, and glial cell plasticity. Neural. Plast. 2017, 8640970.
  29. Eisele P.S., Salatino S., Sobek J., Hottiger M.O., Handschin C. 2013. The peroxisome proliferator-activated receptor γ coactivator 1α/β (PGC-1) coactivators repress the transcriptional activity of NF-κB in skeletal muscle cells. J. Biol. Chem. 288 (4), 2246–2260.
  30. Singh B.K., Sinha R.A., Tripathi M., Mendoza A., Ohba K., Sy J.A.C., Xie S.Y., Zhou J., Ho J.P., Chang C.Y., Wu Y., Giguère V., Bay B.H., Vanacker J.M., Ghosh S., Gauthier K., Hollenberg A.N., McDonnell D.P., Yen P.M. 2018. Thyroid hormone receptor and ERRα coordinately regulate mitochondrial fission, mitophagy, biogenesis, and function. Sci. Signal. 11 (536), eaam5855.
  31. Rius-Perez S., Torres-Cuevas I., Millan I., Ortega A.L., Perez S. 2020. PGC-1α, inflammation, and oxidative stress: An integrative view in metabolism. Oxid. Med. Cell. Longev. 2020, 1452696.
  32. Chen T.T., Maevsky E.I., Uchitel M.L. 2015. Maintenance of homeostasis in the aging hypothalamus: The central and peripheral roles of succinate. Front. Endocrinol. 6, 7.
  33. Abe N., Nishihara T., Yorozuya T., Tanaka J. 2020. Microglia and macrophages in the pathological central and peripheral nervous systems. Cells. 9 (9), 2132.
  34. Daskalakis N.P., Meijer O.C., Kloet E.R. 2022. Mineralocorticoid receptor and glucocorticoid receptor work alone and together in cell-type-specific manner: Implications for resilience prediction and targeted therapy. Neurobiol. Stress. 18, 100455.
  35. Nicola A.F., Meyer M., Guennoun R., Schumacher M., Hunt H., Belanoff J., Kloet E.R., Deniselle M.C.G. 2020. Insights into the therapeutic potential of glucocorticoid receptor modulators for neurodegenerative diseases. Int. J. Mol. Sci. 21 (6), 2137.
  36. Bao A.M., Fischer D.F., Wu Y.H., Hol E.M., Balesar R., Unmehopa U.A., Zhou J.N., Swaab D.F. 2006. A direct androgenic involvement in the expression of human corticotropin-releasing hormone. Mol. Psychiatry. 11 (6), 567–576.
  37. Bianchi V.E., Rizzi L., Bresciani E., Omeljaniuk R., Torsello A. 2020. Androgen therapy in neurodegenerative diseases. J. Endocr. Soc. 4 (11), bvaa120.
  38. Dostert A., Heinzel T. 2004. Negative glucocorticoid receptor response elements and their role in glucocorticoid action. Curr. Pharm. Des. 10 (23), 2807–2816.
  39. Kamal R.M., Noorden M.S., Franzek E., Dijkstra B.A.G., Loonen A.J.M., De Jong C.A.J. 2016. The Neurobiological mechanisms of gamma-hydroxybutyrate dependence and withdrawal and their clinical relevance: A review. Neuropsychobiology. 73 (2), 65–80.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (830KB)
3.

Download (301KB)

Copyright (c) 2023 Терехина О.L., Кирова Ю.I.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies