An investigation of the electrical properties and microstructure of Ni/Ce<sub>0.8</sub>Gd<sub>0.2</sub>O<sub>2</sub>, composite-based anode for a solid oxide fuel cell fabricated by 3D printing
-
Published:2024-07-12
Issue:1
Volume:60
Page:79-84
-
ISSN:0424-8570
-
Container-title:Электрохимия
-
language:
-
Short-container-title:Èlektrohimiâ
Author:
Asmedianova A. D.12, Titkov A. I.1
Affiliation:
1. Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences 2. Novosibirsk State University
Abstract
In this work, a series of planar anode billes for a solid oxide fuel cell based on NiO/Ce0.8Gd0.2O2 (NiO/GDC) was fabricated using the microdroplet 3D printing method with a pneumatic metering valve. The porosity and shrinkage coefficient during sintering of the anode billes, depending on the method of fabrication, have been investigated.
Anode billes were reduced in a hydrogen flow, and the effect of printing parameters on the morphological, structural, and electrochemical characteristics of NiO/Ce0.8Gd0.2O2 cermet was studied. The use of 3D printing was found to increase the porosity of the Ni/GDC composite from 7 to 23% as compared to that of the sample prepared by means of casting, while the value of electrical conductivity, (2.82 ± 0.06)·103 S/cm, remains high.
Publisher
The Russian Academy of Sciences
Reference15 articles.
1. Tai, X.Y., Zhakeyev, A., Wang, H., Jiao, K., Zhang, H., and Xuan, J., Accelerating Fuel Cell Development with Additive Manufacturing Technologies: State of the Art, Opportunities and Challenges, Fuel Cells, 2019, vol. 19, no. 6, p. 636. 2. Лебедева, М.В., Яштулов, Н.А. Топливные элементы – характеристика, физико-химические параметры, применение. Учеб. пособие. М.: Мир науки, 2020. Сетевое изд., с. 17. 3. Modak, C.D., Kumar, A., Tripathy, A., and Sen, P., Drop impact printing, Nat. Commun., 2020, vol. 11, p. 4327. 4. Bagishev, A., Titkov, A., Vorobyev, A., Borisenko, T., Bessmeltsev, V., Katasonov, D., and Nemudry, A., Development of composite electrode materials based on nickel oxide for additive manufacturing of fuel cells, MATEC Web of Conferences, 2021, vol. 340, p. 1115. 5. Bagishev, A.S., Mal’bakhova, I.M., Vorob’ev, A.M., Borisenko, T.A., Asmedianova, A.D., Titkov, A.I., and Nemudryi, A.P., Layer-by-Layer Formation of the NiO/CGO Composite Anode for SOFC by 3D Inkjet Printing Combined with Laser Treatment, Russ. J. Electrochem., 2022, vol. 58, p. 600.
|
|