An investigation of the electrical properties and microstructure of Ni/Ce<sub>0.8</sub>Gd<sub>0.2</sub>O<sub>2</sub>, composite-based anode for a solid oxide fuel cell fabricated by 3D printing

Author:

Asmedianova A. D.12,Titkov A. I.1

Affiliation:

1. Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences

2. Novosibirsk State University

Abstract

In this work, a series of planar anode billes for a solid oxide fuel cell based on NiO/Ce0.8Gd0.2O2 (NiO/GDC) was fabricated using the microdroplet 3D printing method with a pneumatic metering valve. The porosity and shrinkage coefficient during sintering of the anode billes, depending on the method of fabrication, have been investigated. Anode billes were reduced in a hydrogen flow, and the effect of printing parameters on the morphological, structural, and electrochemical characteristics of NiO/Ce0.8Gd0.2O2 cermet was studied. The use of 3D printing was found to increase the porosity of the Ni/GDC composite from 7 to 23% as compared to that of the sample prepared by means of casting, while the value of electrical conductivity, (2.82 ± 0.06)·103 S/cm, remains high.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3