Deviants violating higher-order auditory regularities can become predictive and facilitate behaviour

Author:

Coy NinaORCID,Bendixen Alexandra,Grimm Sabine,Roeber Urte,Schröger Erich

Abstract

AbstractThe human auditory system is believed to represent regularities inherent in auditory information in internal models. Sounds not matching the standard regularity (deviants) elicit prediction error, alerting the system to information not explainable within currently active models. Here, we examine the widely neglected characteristic of deviants bearing predictive information themselves. In a modified version of the oddball paradigm, using higher-order regularities, we set up different expectations regarding the sound following a deviant. Higher-order regularities were defined by the relation of pitch within tone pairs (rather than absolute pitch of individual tones). In a deviant detection task participants listened to oddball sequences including two deviant types following diametrically opposed rules: one occurred mostly in succession (high repetition probability) and the other mostly in isolation (low repetition probability). Participants in Experiment 1 were not informed (naïve), whereas in Experiment 2 they were made aware of the repetition rules. Response times significantly decreased from first to second deviant when repetition probability was high—albeit more in the presence of explicit rule knowledge. There was no evidence of a facilitation effect when repetition probability was low. Significantly more false alarms occurred in response to standards following high compared with low repetition probability deviants, but only in participants aware of the repetition rules. These findings provide evidence that not only deviants violating lower- but also higher-order regularities can inform predictions about auditory events. More generally, they confirm the utility of this new paradigm to gather further insights into the predictive properties of the human brain.

Funder

Bundesministerium für Bildung und Forschung

Universität Leipzig

Publisher

Springer Science and Business Media LLC

Subject

Linguistics and Language,Sensory Systems,Language and Linguistics,Experimental and Cognitive Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3