A neural oscillatory signature of sustained anxiety

Author:

Roxburgh Ariel D.ORCID,White David J.,Grillon Christian,Cornwell Brian R.

Abstract

Abstract Background Anxiety is a sustained response to uncertain threats; yet few studies have explored sustained neurobiological activities underlying anxious states, particularly spontaneous neural oscillations. To address this gap, we reanalysed magnetoencephalographic (MEG) data recorded during induced anxiety to identify differences in sustained oscillatory activity between high- and low-anxiety states. Methods We combined data from three previous MEG studies in which healthy adults (total N = 51) were exposed to alternating periods of threat of unpredictable shock and safety while performing a range of cognitive tasks (passive oddball, mixed–saccade or stop-signal tasks). Spontaneous, band-limited, oscillatory activity was extracted from middle and late intervals of the threat and safe periods, and regional power distributions were reconstructed with adaptive beamforming. Conjunction analyses were used to identify regions showing overlapping spectral power differences between threat and safe periods across the three task paradigms. Results MEG source analyses revealed a robust and widespread reduction in beta (14-30 Hz) power during threat periods in bilateral sensorimotor cortices extending into right prefrontal regions. Alpha (8-13 Hz) power reductions during threat were more circumscribed, with notable peaks in left intraparietal sulcus and thalamus. Conclusions Threat-induced anxiety is underpinned by a sustained reduction in spontaneous beta- and alpha-band activity in sensorimotor and parietal cortical regions. This general oscillatory pattern likely reflects a state of heightened action readiness and vigilance to cope with uncertain threats. Our findings provide a critical reference for which to identify abnormalities in cortical oscillatory activities in clinically anxious patients as well as evaluating the efficacy of anxiolytic treatments.

Funder

Barbara Dicker Brain Sciences Foundation

Monash University

Publisher

Springer Science and Business Media LLC

Subject

Behavioral Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3