How to construct liquid-crystal spectacles to control vision of real-world objects and environments

Author:

Gomez Michael A.ORCID,Snow Jacqueline C.

Abstract

AbstractA major challenge in studying naturalistic vision lies in controlling stimulus and scene viewing time. This is especially the case for studies using real-world objects as stimuli (rather than computerized images) because real objects cannot be “onset” and “offset” in the same way that images can be. Since the late 1980s, one solution to this problem has been to have the observer wear electro-optic spectacles with computer-controlled liquid-crystal lenses that switch between transparent (“open”) and translucent (“closed”) states. Unfortunately, the commercially available glasses (PLATO Visual Occlusion Spectacles) command a high price tag, the hardware is fragile, and the glasses cannot be customized. This led us to explore how to manufacture liquid-crystal occlusion glasses in our own laboratory. Here, we share the products of our work by providing step-by-step instructions for researchers to design, build, operate, and test liquid-crystal glasses for use in experimental contexts. The glasses can be assembled with minimal technical knowledge using readily available components, and they can be customized for different populations and applications. The glasses are robust, and they can be produced at a fraction of the cost of commercial alternatives. Tests of reliability and temporal accuracy show that the performance of our laboratory prototype was comparable to that of the PLATO glasses. We discuss the results of our work with respect to implications for promoting rigor and reproducibility, potential use cases, comparisons with other liquid-crystal shutter glasses, and how users can find information regarding future updates and developments.

Publisher

Springer Science and Business Media LLC

Subject

General Psychology,Psychology (miscellaneous),Arts and Humanities (miscellaneous),Developmental and Educational Psychology,Experimental and Cognitive Psychology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3