Affiliation:
1. Universiti Malaysia Sarawak
2. Universitas Pembangunan Jaya
Abstract
This paper describes the investigation into stormwater control measures of a 3,425 m2 commercial centre with 61% of the total areas which were tarred surfaces. Targeting these surfaces, permeable roads of various surface areas from 10 to 34% of the total areas were modelled using Storm Water Management Model version 5.0. Testing the permeable roads for very-short duration storms ranging from 5 to 15 minutes, the study found that the catchment area contributing water for detention purposes played a major role in stormwater control. Other than that, the orifice outlet attached to the storage facility was dominant in determining the flow than the storage depth.
Reference17 articles.
1. Singaporean Public Utilities Board, Technical Guide for On-Site Detention Tank Systems, National Water Agency, Singapore, 2010.
2. Malaysian Department of Irrigation and Drainage, Urban Stormwater Management Manual for Malaysia. Ministry of Environment and Water, Kuala Lumpur, 2012.
3. Ngu, J.O.K., Mah, D.Y.S., Taib, S.N.L., Mannan, M.A., Chai, S.L., Evaluating the Efficiency of Household Stormwater Detention System. ASEAN Engineering Journal, 10(2): 105-114, 2020.
4. Mah, D.Y.S., Ngu, J.O.K., Caroline, P.D., Malek, M.A., Catchment Size to Effective Tank Volume Relationships for Individual Lot Stormwater Detention System in Malaysian Detached House. International Journal of Advanced Trends in Computer Science and Engineering, 9(5): 8358-8363, 2020. doi:10.30534/ijatcse/2020/209952020.
5. Terêncio, D.P.S., Sanches Fernandes, L.F., Cortes, R.M.V., Moura, J.P., Pacheco, F.A.L., Flood Risk Attenuation in Critical Zones of Continental Portugal using Sustainable Detention Basins. Science of the Total Environment, 721: 137727, 2020. doi:10.1016/j.scitotenv.2020.137727.