Abstract
This paper considers the distribution of distance between random points and shows how the distribution can be found when the points are chosen uniformly and independently in a hypersphere or in two adjacent unit squares. The value of a powerful extension of the classical Crofton technique is illustrated here for solving such geometric probability problems. This method is quite different from those employed by Hammersley and Oser.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献