Evaluation of the Infinium Methylation 450K technology

Author:

Dedeurwaerder Sarah1,Defrance Matthieu1,Calonne Emilie1,Denis Hélène1,Sotiriou Christos2,Fuks François

Affiliation:

1. Laboratory of Cancer Epigenetics, Université Libre de Bruxelles, Faculty of Medicine, Route de Lennik 808, 1070 Brussels, Belgium

2. Breast Cancer Translational Research Laboratory JC Heuson, Université Libre de Bruxelles, Jules Bordet Institute, Boulevard de Waterloo 127, 1000 Brussels, Belgium

Abstract

Aims: Studies of DNA methylomes hold enormous promise for biomedicine but are hampered by the technological challenges of analyzing many samples cost-effectively. Recently, a major extension of the previous Infinium HumanMethylation27 BeadChip® (Illumina, Inc. CA, USA), called Infinium HumanMethylation450 (Infinium Methylation 450K; Illumina, Inc. CA, USA) was developed. This upgraded technology is a hybrid of two different chemical assays, the Infinium I and Infinium II assays, allowing (for 12 samples in parallel) assessment of the methylation status of more than 480,000 cytosines distributed over the whole genome. In this article, we evaluate Infinium Methylation 450K on cell lines and tissue samples, highlighting some of its advantages but also some of its limitations. In particular, we compare the methylation values of the Infinium I and Infinium II assays. Materials & methods: We used Infinium Methylation 450K to profile: first, the well-characterized HCT116 wild-type and double-knockout cell lines and then, 16 breast tissue samples (including eight normal and eight primary tumor samples). Absolute methylation values (β-values) were extracted with the GenomeStudio™ software and then subjected to detailed analysis. Results: While this technology appeared highly robust as previously shown, we noticed a divergence between the β-values retrieved from the type I and type II Infinium assays. Specifically, the β-values obtained from Infinium II probes were less accurate and reproducible than those obtained from Infinium I probes. This suggests that data from the type I and type II assays should be considered separately in any downstream bioinformatic analysis. To be able to deal with the Infinium I and Infinium II data together, we developed and tested a new correction technique, which we called ‘peak-based correction’. The idea was to rescale the Infinium II data on the basis of the Infinium I data. While this technique should be viewed as an approximation method, it significantly improves the quality of Infinium II data. Conclusion: Infinium 450K is a powerful technique in terms of reagent costs, time of labor, sample throughput and coverage. It holds great promise for the better understanding of the epigenetic component in health and disease. Yet, due to the nature of its design comprising two different chemical assays, analysis of the whole set of data is not as easy as initially anticipated. Correction strategies, such as the peak-based approach proposed here, are a step towards adequate output data analysis.

Publisher

Future Medicine Ltd

Subject

Cancer Research,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3