Characteristics of three microbial colonization states in the duodenum of the cirrhotic patients

Author:

Zha Hua123,Chen Yanfei1,Wu Jieyun24,Chang Kevin5,Lu Yanmeng1,Zhang Hua1,Xie Jiaojiao1,Wang Qiangqiang1,Tang Ruiqi1,Li Lanjuan1ORCID

Affiliation:

1. State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China

2. School of Biological Sciences, The University of Auckland, Auckland, New Zealand

3. Institute of Marine Science, The University of Auckland, Auckland, New Zealand

4. Plant Health & Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand

5. Department of Statistics, The University of Auckland, Auckland, New Zealand

Abstract

Aim: Investigation of characteristics of different duodenal microbial colonization states in patients with liver cirrhosis (LC). Materials & methods: Deep-sequencing analyses of the 16S rRNA gene V1-V3 regions were performed. Results: Both bacterial compositions and richness were different between the three-clustered LC microbiotas, in other words, Cluster_1_LC, Cluster_2_LC and Cluster_3_LC. Cluster_1_LC were more likely at severe dysbiosis status due to its lowest modified cirrhosis dysbiosis ratio. OTU12_ Prevotella and OTU10_ Comamonas were most associated with Cluster_1_LC and Cluster_3_LC, respectively, while OTU38_ Alloprevotella was vital in Cluster_2_LC. Pyruvate-ferredoxin/flavodoxin oxidoreductase, dihydroorotate dehydrogenase and branched-chain amino acid transport system substrate-binding protein were most associated with Cluster_1_LC, Cluster_2_LC and Cluster_3_LC, respectively. Conclusion: The three duodenal microbial colonization states had distinct representative characteristics, which might reflect the health status of cirrhotic patients.

Publisher

Future Medicine Ltd

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3