Leprosy susceptibility: genetic variations regulate innate and adaptive immunity, and disease outcome

Author:

Cardoso Cynthia Chester1,Pereira Ana Carla2,de Sales Marques Carolinne1,Moraes Milton Ozório

Affiliation:

1. Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ. Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Brazil

2. Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil

Abstract

The past few years have been very productive concerning the identification of genes associated with leprosy. Candidate gene strategies using both case–control and family-based designs, as well as large-scale approaches such as linkage and gene-expression genomic scans and, more recently, genome-wide association studies, have refined and enriched the list of genes highlighting the most important innate and adaptive immune pathways associated with leprosy susceptibility or resistance. During the early events of host–pathogen interaction identified genes are involved in pattern recognition receptors, and mycobacterial uptake (TLRs, NOD2 and MRC1), which modulate autophagy. Another gene, LTA4H, which regulates the levels of lipoxin A4 and possibly interacts with lipid droplet-related events, also plays a role in the early immune responses to Mycobacterium leprae. Together, the activation of these pathways regulates cellular metabolism upon infection, activating cytokine production through NF-κB and vitamin D–vitamin D receptor pathways, while PARK2 and LRRK2 participate in the regulation of host-cell apoptosis. Concomitantly, genes triggered to form and maintain granulomas (TNF, LTA and IFNG) and genes involved in activating and differentiating T-helper cells (HLA, IL10, as well as the TNF/LTA axis and the IFNG/IL12 axis) bridge immunological regulation towards adaptive immunity. Subtle variations in these genes, mostly single nucleotide polymorphisms, alter the risk of developing the disease or the severity of leprosy. Knowing these genes and their role will ultimately lead to better strategies for leprosy prevention, treatment and early diagnosis. Finally, the same genes associated with leprosy were also associated with autoimmune (Crohn’s disease, rheumathoid arthritis, psoriasis) or neurodegenerative diseases (Parkinson’s and Alzheimer’s). Thus, information retrieved using leprosy as a model could be valuable to understanding the pathogenesis of other complex diseases.

Publisher

Future Medicine Ltd

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3