Curcumin-encapsulated MePEG/PCL diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy

Author:

Mohanty Chandana,Acharya Sarbari,Mohanty Anjan K,Dilnawaz Fahima,Sahoo Sanjeeb K1

Affiliation:

1. Laboratory for Nanomedicine, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Orissa, India.

Abstract

Aim: To develop a suitable formulation of curcumin-encapsulated methoxy poly(ethylene glycol) (MePEG)/poly-ε-caprolactone (PCL) diblock copolymeric micelle by varying the copolymer ratio, for achieving small sized micelles with high encapsulation of curcumin. To evaluate the micelle’s aqueous solubility and stability, efficiency of cellular uptake, cell cytotoxicity and ability to induce apoptosis on pancreatic cell lines. Method: Amphiphilic diblock copolymers (composed of MePEG and PCL) were used in various ratios for the preparation of curcumin-encapsulated micelles using a modified dialysis method. Physicochemical characterization of the formulation included size and surface charge measurement, transmission electron microscopy characterization, spectroscopic analysis, stability and in vitro release kinetics studies. The anticancer efficacy of the curcumin-encapsulated micelle formulation was compared with unmodified curcumin in terms of cellular uptake, cell cytotoxicity and apoptosis of pancreatic cell lines MIA PaCa-2 and PANC-1. Results: Physiochemical characterization of the formulations revealed that curcumin was efficiently encapsulated in all formulation of MePEG/PCL micelles; however, a 40:60 MePEG:PCL ratio micelle was chosen for experimental studies owing to its high encapsulation (∼60%) with size (∼110 nm) and negative ζ potential (∼-16 mV). Curcumin-encapsulated micelles increased the bioavailability of curcumin due to enhanced uptake (2.95 times more compared with unmodified) with comparative cytotoxic activity (by induction of apoptosis) compared with unmodified curcumin at equimolar concentrations. IC50 values for unmodified curcumin and curcumin micelles were found to be 24.75 µM and 22.8 µM for PANC-1 and 14.96 µM and 13.85 µM for MIA PaCa-2, respectively. Together the results clearly indicate the promise of a micellar system for efficient solubilization, stabilization and controlled delivery of the hydrophobic drug curcumin for cancer therapy.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3