Small magnetite antiretroviral therapeutic nanoparticle probes for MRI of drug biodistribution

Author:

Guo Dongwei1,Li Tianyuzi2,McMillan JoEllyn2,Sajja Balasrinivasa R3,Puligujja Pavan2,Boska Michael D34,Gendelman Howard E124,Liu Xin-Ming124

Affiliation:

1. Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5830, USA

2. Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA

3. Department of Radiology, University of Nebraska Medical Center, Omaha, NE 68198-1045, USA

4. Center for Drug Delivery & Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA

Abstract

Aim: Drug toxicities, compliance and penetrance into viral reservoirs have diminished the efficacy of long-term antiretroviral therapy (ART) for treatment of HIV infection. Cell-targeted nanoformulated ART was developed to improve disease outcomes. However, rapid noninvasive determination of drug biodistribution is unrealized. To this end, small magnetite ART (SMART) nanoparticles can provide assessments of ART biodistribution by MRI. Materials & methods: Poly(lactic-co-glycolic acid), 1,2-distearoyl-sn-glycero-3-phosphocholine- and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(methoxy-PEG 2000)-encased particles were synthesized with atazanavir (ATV) and magnetite. Uptake and retention of ATV and magnetite administered at 3:1 ratios (weight/weight) were determined in human monocyte-derived macrophages and mice. Results: SMART particles were taken up and retained in macrophages. In mice, following parenteral SMART injection, magnetite and drug biodistribution paralleled one another with MRI signal intensity greatest in the liver and spleen at 24 h. Significantly, ATV and magnetite levels correlated. Conclusion: SMART can permit rapid assessment of drug tissue concentrations in viral reservoirs. Original submitted 11 February 2013; Revised submitted 2 April 2013

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3