Tapping the potential of quantum dots for personalized oncology: current status and future perspectives

Author:

Chen Chuang12,Peng Jun34,Sun Sheng-Rong2,Peng Chun-Wei1,Li Yan1,Pang Dai-Wen3

Affiliation:

1. Department of Oncology, Zhongnan Hospital of Wuhan University & Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071, PR China.

2. Department of Breast & Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China

3. Key Laboratory of Analytical Chemistry for Biology & Medicine (Ministry of Education), College of Chemistry & Molecular Sciences, Research Center for Nanobiology & Nanomedicine (MOE 985 Innovative Platform), & State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, PR China

4. Wuhan Jiayuan Quantum Dots Co. Ltd & Wuhan Tumor Nanometer Diagnosis Engineering Research Center, Wuhan 430074, PR China

Abstract

Cancer is one of the most serious health threats worldwide. Personalized oncology holds potential for future cancer care in clinical practice, where each patient could be delivered individualized medicine on the basis of key biological features of an individual tumor. One of the most urgent problems is to develop novel approaches that incorporate the increasing molecular information into the understanding of cancer biological behaviors for personalized oncology. Quantum dots are a heterogeneous class of engineered fluorescent nanoparticles with unique optical and chemical properties, which make them promising platforms for biomedical applications. With the unique optical properties, the utilization of quantum dot-based nanotechnology has been expanded into a wide variety of attractive biomedical applications for cancer diagnosis, monitoring, pathogenesis, treatment, molecular pathology and heterogeneity in combination with cancer biomarkers. Here, we focus on the clinical application of quantum dot-based nanotechnology in personalized oncology, covering topics on individualized cancer diagnosis and treatment by in vitro and in vivo molecular imaging technologies, and in-depth understanding of the biological behaviors of tumors from a nanotechnology perspective. In addition, the major challenges in translating quantum dot-based nanotechnology into clinical application and promising future directions in personalized oncology are also discussed.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3