The challenge of integrating disparate high-content data: epidemiological, clinical and laboratory data collected during an in-hospital study of chronic fatigue syndrome

Author:

Vernon Suzanne D12,Reeves William C12

Affiliation:

1. Centers for Disease Control and Prevention, National Center for Infectious Diseases, Atlanta, GA, USA.

2. .

Abstract

Chronic fatigue syndrome (CFS) is a debilitating illness characterized by multiple unexplained symptoms including fatigue, cognitive impairment and pain. People with CFS have no characteristic physical signs or diagnostic laboratory abnormalities, and the etiology and pathophysiology remain unknown. CFS represents a complex illness that includes alterations in homeostatic systems, involves multiple body systems and results from the combined action of many genes, environmental factors and risk-conferring behavior. In order to achieve understanding of complex illnesses, such as CFS, studies must collect relevant epidemiological, clinical and laboratory data and then integrate, analyze and interpret the information so as to obtain meaningful clinical and biological insight. This issue of Pharmacogenomics represents such an approach to CFS. Data was collected during a 2-day in-hospital study of persons with CFS, other medically and psychiatrically unexplained fatiguing illnesses and nonfatigued controls identified from the general population of Wichita, KS, USA. While in the hospital, the participants’ psychiatric status, sleep characteristics and cognitive functioning was evaluated, and biological samples were collected to measure neuroendocrine status, autonomic nervous system function, systemic cytokines and peripheral blood gene expression. The data generated from these assessments was made available to a multidisciplinary group of 20 investigators from around the world who were challenged with revealing new insight and algorithms for integration of this complex, high-content data and, if possible, identifying molecular markers and elucidating pathophysiology of chronic fatigue. The group was divided into four teams with representation from the disciplines of medicine, mathematics, biology, engineering and computer science. The papers in this issue are the culmination of this 6-month challenge, and demonstrate that data integration and multidisciplinary collaboration can indeed yield novel approaches for handling large, complex datasets, and reveal new insight and relevance to a complex illness such as CFS.

Publisher

Future Medicine Ltd

Subject

Pharmacology,Genetics,Molecular Medicine

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3