Ab’initio studies of the structural and electronic properties for single-walled armchair MgONT, SiCNTs and ZnONTs for next generations’ optoelectronics

Author:

Itas Yahaya Saadu,Suleiman Abdussalam Balarabe,Yamusa Aminu Shehu,Razali Razif,Danmadami Amina Mohammad

Abstract

Due to greater demand to use 1D semiconducting chips to replace semiconductors made from bulk structures We studied the structural and electronic properties of free (7, 0) metallic oxides and non-metallic carbide nanotubes. SWMgONT, SWZnONT and SWSiCNT were chosen as the representative model. All the quantum simulation studies were done within DFT ab’initio implemented in quantum ESPRESSO. Results obtained for structural properties revealed that the most stable bond lengths of MgONT, ZnONT and SiCNT are 1.80 Å, 1.82 Å and 1.42 Å respectively. The results obtained revealed 2.8 eV band gap for SWMgONT, 0.5 eV for SWZnONT and 0.8 eV for SWSiCNT respectively. Furthermore SWMgONT and SWZnONT are regarded as direct band gap semiconductors while SWSiCNT is regarded as an indirect semiconductor with narrow band gap. The narrow band gap of all the three systems obtained demonstrates their potential in the optoelectronic application in the next generations’ sustainability science and technology. Recent studies showed that explorations were conducted on oxide nanotubes such SiO2NT, however to the best of our knowledge, studies of the oxide nanotubes of Mg, Zn and Si have not been reported, hence few literature are available.

Publisher

IPS Intelligentsia Publishing Services

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3