An improved neurogenetic model for recognition of 3D kinetic data of human extracted from the Vicon Robot system

Author:

Stepanyan Ivan V.ORCID,Hameed Safa A.ORCID

Abstract

These days, it is crucial to discern between different types of human behavior, and artificial intelligence techniques play a big part in that.  The characteristics of the feedforward artificial neural network (FANN) algorithm and the genetic algorithm have been combined to create an important working mechanism that aids in this field. The proposed system can be used for essential tasks in life, such as analysis, automation, control, recognition, and other tasks. Crossover and mutation are the two primary mechanisms used by the genetic algorithm in the proposed system to replace the back propagation process in ANN. While the feedforward artificial neural network technique is focused on input processing, this should be based on the process of breaking the feedforward artificial neural network algorithm. Additionally, the result is computed from each ANN during the breaking up process, which is based on the breaking up of the artificial neural network algorithm into multiple ANNs based on the number of ANN layers, and therefore, each layer in the original artificial neural network algorithm is assessed. The best layers are chosen for the crossover phase after the breakage process, while the other layers go through the mutation process. The output of this generation is then determined by combining the artificial neural networks into a single ANN; the outcome is then checked to see if the process needs to create a new generation. The system performed well and produced accurate findings when it was used with data taken from the Vicon Robot system, which was primarily designed to record human behaviors based on three coordinates and classify them as either normal or aggressive.

Publisher

College of Science for Women

Subject

General Physics and Astronomy,Agricultural and Biological Sciences (miscellaneous),General Biochemistry, Genetics and Molecular Biology,General Mathematics,General Chemistry,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3