The Impact of Denial-of-Service Attacks and Queue Management Algorithms on Cellular Networks

Author:

ÇAKMAK Muhammet1ORCID

Affiliation:

1. KARABÜK ÜNİVERSİTESİ

Abstract

In today's digital landscape, Distributed Denial of Service (DDoS) attacks stand out as a formidable threat to organisations all over the world. As known technology gradually advances and the proliferation of mobile devices, cellular network operators face pressure to fortify their infrastructure against these risks. DDoS incursions into Cellular Long-Term Evolution (LTE) networks can wreak havoc, elevate packet loss, and suboptimal network performance. Managing the surges in traffic that afflict LTE networks is of paramount importance. Queue management algorithms emerge as a viable solution to wrest control over congestion at the Radio Link Control (RLC) layer within LTE networks. These algorithms work proactively, anticipating, and mitigating congestion by curtailing data transfer rates and fortifying defences against potential DDoS onslaughts. In the paper, we delve into a range of queue management methods Drop-Tail, Random Early Detection (RED), Controlled Delay (CoDel), Proportional Integral Controller Enhanced (PIE), and Packet Limited First In, First Out queue (pFIFO). Our rigorous evaluation of these queue management algorithms hinges on a multifaceted assessment that encompasses vital performance parameters. We gauge the LTE network's resilience against DDoS incursions, measuring performance based on end-to-end delay, throughput, packet delivery rate (PDF), and fairness index values. The crucible for this evaluation is none other than the NS3 simulator, a trusted platform for testing and analysis. The outcomes of our simulations provide illuminating insights. CoDel, RED, PIE, pFIFO, and Drop-Tail algorithms emerge as top performers in succession. These findings underscore the critical role of advanced queue management algorithms in fortifying LTE networks against DDoS attacks, offering robust defences and resilient network performance.

Publisher

Journal of Intelligent Systems: Theory and Applications, Harun TASKIN

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3