THE EFFECT OF BRASS (Cu-Zn) CATALYTIC CONVERTER ENGINE PERFORMANCE

Author:

Ellyanie Ellyanie,Oktabri H Devan

Abstract

Installing a catalytic converter in the exhaust is a typical method of reducing engine exhaust emissions. Catalytic converters have been shown to lower exhaust pollutants while enhancing engine performance. The influence of the number of brass catalyst plates (Cu-Zn) on the Performance of the commercial Yamaha Jupiter MX motorcycle engine manufactured in 2007 was investigated in this study. The catalyst is installed in the motorbike exhaust, with the number of catalyst plates varying between 5 and 8, and a conventional uncatalyzed exhaust serving as a comparison. Torque, power, specific fuel consumption, and thermal efficiency are among the performance factors that will be considered. A prony brake dynamometer was used to conduct torque and power measurements. The results indicate that exhaust with eight catalyst plates can improve engine performance more than an exhaust with five catalyst plates. Furthermore, exhausts equipped with eight catalyst plates can boost engine efficiency by an average of 17.65%. Thus, increasing the number of catalyst brass plates improves the machine's efficiency.

Publisher

Asosiasi Peneliti Sriwijaya

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of vertical the flow straightener position to velocity gas flow profile in sampling point of stack;TOWARD ADAPTIVE RESEARCH AND TECHNOLOGY DEVELOPMENT FOR FUTURE LIFE;2023

2. Rainbot RGB Rev 2 based pneumatic ejector system design;TOWARD ADAPTIVE RESEARCH AND TECHNOLOGY DEVELOPMENT FOR FUTURE LIFE;2023

3. Identification system design of chicken eggs size based on infrared sensors;TOWARD ADAPTIVE RESEARCH AND TECHNOLOGY DEVELOPMENT FOR FUTURE LIFE;2023

4. Identification system design of chicken eggs quality based on photodiode sensor;TOWARD ADAPTIVE RESEARCH AND TECHNOLOGY DEVELOPMENT FOR FUTURE LIFE;2023

5. Development of color identification system using Raspberry Pi 3 B+;TOWARD ADAPTIVE RESEARCH AND TECHNOLOGY DEVELOPMENT FOR FUTURE LIFE;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3