Mining waste acting as a precursor of environmental stress in sediments

Author:

da Silva Paulo Roberto Bairros1ORCID,Parizotto Denise2ORCID,Silva Leonardo Roggen2ORCID,Parreira Paulo Sergio3ORCID,Melquiades Fabio Luiz3ORCID,Mauad Frederico Fábio2ORCID

Affiliation:

1. Universidade Federal de Santa Maria, Brazil

2. Universidade de São Paulo, Brazil

3. Universidade Estadual de Londrina (UEL), Brazil

Abstract

Abstract Waste generated by mineral extraction is globally associated with environmental disturbances due to its deleterious effect on water resources. However, research focused on the influence of mine tailings resulting from the extraction of semi-precious stones on fluvial systems is still incipient in the environmental literature. From this perspective, this study quantified the average concentrations of major oxides present in the fine fractions of the sediment samples from the Várzea river, in the State of Rio Grande do Sul, southern Brazil, using wavelength dispersive X-ray fluorescence spectrometry. This region is acknowledged as the largest rock amethyst mining area in the world. Additionally, geochemical indices were established to characterize potential sources of production, maturity, degree of weathering, and sediment pollution. To evaluate the influence of mine tailings on the Várzea river sediments, the contents of Al2O3, Fe2O3, MnO, P2O5, CaO, SiO2, K2O, CuO, ZnO, and TiO2 major oxides present in sediment samples were determined and compared to the local background values; the values varied significantly (p < 0.05), classifying them as polluted and medium polluted. Also, the sediment samples with evident characteristics of extreme chemical weathering consist mainly of clay minerals and mafic igneous rocks, and similarities were found between sediment samples and tailings from the mineral extraction zone. The Principal Component Analysis and the cluster analysis also suggest the existence of three distinct mineral oxide groups, differentiating the zones leaving and upstream the mining zone from the other sampling points.

Publisher

FapUNIFESP (SciELO)

Subject

Waste Management and Disposal

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3