Curcumin regulates intracellular calcium release and inhibits oxidative stress parameters, VEGF, and caspase-3/-9 levels in human retinal pigment epithelium cells

Author:

Bardak H1,Uğuz AC23,Bardak Y1

Affiliation:

1. 1 Department of Ophthalmology, Haydarpasa Numune Research and Training Hospital, Istanbul, Turkey

2. 2 Faculty of Medicine, Department of Biophysics, Süleyman Demirel University, Isparta, Turkey

3. 3 Neuroscience Research Center, Süleyman Demirel University, Isparta, Turkey

Abstract

In this study, we aimed to observe whether curcumin (cur), a polyphenolic compound derived from the dietary spice turmeric, a yellow substance obtained from the root of the plant Curcuma longa Linn, has any protective effect against blue light irradiation in human retinal pigment epithelium (ARPE-19) cells. For this purpose, we evaluated the intracellular calcium release mechanism, poly ADP ribose polymerase (PARP), procaspase-3/-9 protein expression levels, caspase activation, and reactive oxygen species levels. ARPE-19 cells were divided into four main groups, such as control, cur, blue light, and cur + blue light. Results were evaluated by Kruskal–Wallis and Mann–Whitney U tests as post hoc tests. The cells in cur and cur + blue light samples were incubated with 20 μM cur. Blue light exposure was performed for 24 h in an incubator. Lipid peroxidation and cytosolic-free Ca2+ [Ca2+]i concentrations were higher in the blue light exposure samples than in the control samples; however, their levels were determined as significantly lower in the cur and cur + blue light exposure samples than in the blue light samples alone. PARP and procaspase-3 levels were significantly higher in blue light samples. Cur administration significantly decreased PARP and procaspase-3 expression levels. Reduced glutathione and glutathione peroxidase values were lower in the blue light exposure samples, although they were higher in the cur and cur + blue light exposure samples. Caspase-3 and -9 activities were lower in the cur samples than in the blue light samples. Moreover, vascular endothelial growth factor (VEGF) levels were significantly higher in the blue light exposure samples. In conclusion, cur strongly induced regulatory effects on oxidative stress, intracellular Ca2+ levels, VEGF levels, PARP expression levels, and caspase-3 and -9 values in an experimental oxidative stress model in ARPE-19 cells.

Publisher

Akademiai Kiado Zrt.

Subject

Physiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3