Landform evolution of the Qilian Shan since 120 Ma revealed by apatite fission track data

Author:

Zhao Qiming1ORCID,Hu Xiaofei1ORCID,Sun Xiaoying1,Pan Yanfei1,Pan Baotian1

Affiliation:

1. Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China

Abstract

The Cenozoic uplift of the Qilian Shan mountain range is intimately connected with the collision of the Indian and Eurasian plates, although the mechanism of deformation is still unclear due to the large distance between the Qilian Shan and the plate collision boundary. The first requirement if we are to determine this mechanism is to obtain the uplift process of the Qilian Shan range, which remains a matter of debate. We compiled apatite fission track data from previous studies of the Qilian Shan range to investigate the spatial and temporal disparities or similarities of the exhumation process. Most of the age-evolution profiles and thermo-modelling results show a low exhumation rate from 80 to 20 Ma, corresponding to shorter apatite fission track lengths, indicating a lower rate of erosion and lower relief across the whole Qilian Shan region. The results also reveal two stages of rapid exhumation: during the Cretaceous (120–80 Ma) and since the Miocene (20–0 Ma). The exhumation history of the Qilian Shan range shows no significant spatial difference and outward growth was limited at the southern and northern edges after 5 Ma. This temporal and spatial pattern for the exhumation of the Qilian Shan range suggests that there was probably no obvious uplift at the time of the initial collision of the Indian–Tibetan plates and support the proposal that the whole Qilian range has uplifted synchronously since 20 Ma.

Funder

Second Tibetan Plateau Scientific Expedition and research program

National Natural Science Foundation of China

Publisher

Geological Society of London

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3