L1CAM in the Early Enteric and Urogenital System

Author:

Pechriggl Elisabeth Judith12345,Concin Nicole12345,Blumer Michael J.12345,Bitsche Mario12345,Zwierzina Marit12345,Dudas Jozsef12345,Koziel Katarzyna12345,Altevogt Peter12345,Zeimet Alain-Gustave12345,Fritsch Helga12345

Affiliation:

1. Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology (EJP, MJB, MB, MZ, HF), Medical University of Innsbruck, Innsbruck, Austria

2. Department of Gynaecology and Obstetrics (NC, KK, A-GZ), Medical University of Innsbruck, Innsbruck, Austria

3. Department of Otolaryngology (JD), Medical University of Innsbruck, Innsbruck, Austria

4. Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany (PA)

5. Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany (PA)

Abstract

L1 cell adhesion molecule (L1CAM) is a transmembrane molecule belonging to the L1 protein family. It has shown to be a key player in axonal guidance in the course of neuronal development. Furthermore, L1CAM is also crucial for the establishment of the enteric and urogenital organs and is aberrantly expressed in cancer originating in these organs. Carcinogenesis and embryogenesis follow a lot of similar molecular pathways, but unfortunately, comprehensive data on L1CAM expression and localization in human developing organs are lacking so far. In the present study we, therefore, examined the spatiotemporal distribution of L1CAM in the early human fetal period (weeks 8–12 of gestation) by means of immunohistochemistry and in situ hybridization (ISH). In the epithelia of the gastrointestinal organs, L1CAM localization cannot be observed in the examined stages most likely due to their advanced polarization and differentiation. Despite these results, our ISH data indicate weak L1CAM expression, but only in few epithelial cells. The genital tracts, however, are distinctly L1CAM positive throughout the entire fetal period. We, therefore, conclude that in embryogenesis L1CAM is crucial for further differentiation of epithelia.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3