Abstract
The effect of the nickel (Ni) and aluminum (Al) reactant particle size on the micropyretic synthesis of NiAl is studied in this article. A change in the low melting component (Al particle) size is noted to have a limited influence on the micropyretic synthesis conditions. However, a change in the high melting component (Ni particle) size not only influences the combustion temperature and propagation velocity, but also affects the final porosity and grain size of the synthesized products. The combustion mode is also noted to change from stable to unstable when the Ni particle size is increased. It is noted that a diffusion-type control mechanism is dominant for the rapid reaction sequence in the NiAl system. An atomistic mechanism of the Ni-Al micropyretic reaction is also proposed in this article. Following this model, analytical expressions are developed to relatc the variation of the Ni size to the NiAl formation rate with the imposed processing conditions during the micropyretic synthesis. The mechanism of the final grain formation and the grain size changes with changes in the processing variables is also discussed.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献