Author:
He Cheng,Stangle Gregory C.
Abstract
The mechanism and kinetics of the chemical reaction between Nb(s) and C(s) under self-propagating high-temperature synthesis (SHS)-like (or combustion synthesis-like) conditions have been studied. Experiments were designed and conducted in order to produce a transport-resistance-free reaction between Nb and C under time-temperature conditions that are characteristic of the combustion synthesis process. To do so, a reaction couple, consisting of carbon and either a thin niobium foil or a fine niobium wire, was used. The effects of the temperature history and the formation of a liquid phase on the reaction were studied. In addition, theoretical experiments of the reaction were also conducted. The results showed that at high temperatures, layered niobium carbide phases formed in a direction that was parallel to the original carbon-niobium interface. As might be expected, local melting played a very significant role in the reactions. The mechanism and kinetics of these reactions provide a fundamental understanding of the manner and rate by which a powder-based Nb/C SHS process takes place, and, by extension, to a large, general class of solid-solid material synthesis processes that are based on the SHS (or combustion synthesis) process.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献