Preparing Monodisperse Metal Powders in Micrometer and Submicrometer Sizes by the Polyol Process

Author:

Fievet F.,Lagier J.P.,Figlarz M.

Abstract

One of the newer tendencies in materials science has been to tailor-make classical products (long associated with old applications) with controlled properties for special uses, especially in high technology. Preparing dispersed systems in which all particles have nearly uniform size (monodisperse solids) is a typical example. This goal can be achieved in some cases through cleverly controlled particle growth from a liquid medium. Examples of such preparations include gold colloids prepared by Zsigmondy and later by Turkevich et al., sulfur sols obtained by LaMer, metal oxides and hydrous oxides prepared by Matijević et al., silica, etc. These dispersions have been used either to check theories of colloid science, or to a lesser extent, for industrial purposes. In the case of fine metal particles, a uniform size distribution associated with a low degree of agglomeration, and sometimes the spherical shape, appear as particularly convenient characteristics for certain applications. The production of conductive inks or pastes for electronic materials and for the preparation of conductive paints are particularly good examples.In so-called thick film technology, conductive inks and pastes are screen printed on a ceramic substrate in order to form, after firing, a conductive film with a thickness less than 10 μm. This technique is, for instance, used to form the network in hybrid integrated circuits or the internal electrodes of multilayer ceramic capacitors.Metallic powders in thick film compositions are usually precious metals (Au, Ag, Pt, Pd), their mixtures, or alloys. Cheaper metals such as copper or nickel are tested and may be potential substitutes for precious metals in different specific applications. Powders for thick film composition are mainly obtained through chemical precipitation from aqueous or organic solutions, which yield high purity powders. Modification of precipitation parameters (such as the nature and the concentration of the starting metallic compound and of the reducing agent, reaction temperature, viscosity of the medium) and the addition of additives and surfactants, can often be used to control particle size and agglomeration.Over the past few years, we have developed a new process for preparing finely divided metal powders of easily reducible metals (such as precious metals and copper) or less reducible metals (such as cobalt, nickel, cadmium, or lead) by precipitation in liquid polyols. This reaction will be used as an example in order to discuss the mechanism of formation of uniform micrometer and submicrometer size metal particles by precipitation reactions.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference25 articles.

1. Nucleation in Phase Transitions.

2. Figlarz M. , Fievet F. , and Lagier J.P. , French patent no. 82 21483 (December 21, 1982); Europe Patent No. 011 3281; U.S. Patent No. 45 39041; Finland Patent No. 74416; Japan Application No. 24 303783.

3. Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents

4. Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3