Relating Local Bone Stiffness and Calcium Content by Combined Nanoindentation and Backscattered Electron Imaging

Author:

Weber M.,Schoeberl T.,Roschger P.,Klaushofer K.,Fratzl P.

Abstract

AbstractBone is a hierarchically structured mineral-organic composite material that has to bear static and dynamic mechanical loads applied by body weight and locomotion. Bone mechanical properties are influenced by a number of factors, depending on the particular hierarchical levels. The high stiffness of bone material is mainly achieved by reinforcement with calcium phosphate mineral platelets. A model for this elementary structure level consists of an arrangement of staggered mineral bricks, embedded in collagen matrix, which provides both stiffness and toughness. The mechanical properties depend on the amount, shape and arrangement of the mineral particles but also on the properties of the collagen-rich matrix.One of the difficulties in assessing the properties of hierarchical structures is the inherent inhomogeneity of the tissue: Parameters such as stiffness or calcium content vary throughout a bone section. Such type of investigations becomes more meaningful by a combination of two complementary methods e.g. quantitative backscattered electron imaging (qBEI) and nanoindentation. The local Ca-content, representing the degree of the mineralization, is extracted from the qBEI measurements, whereas the local mechanical properties, elastic modulus and hardness, are measured by nanoindentation, a miniaturized hardness testing using a small diamond tip. The measured correlations between local Ca-content and mechanical strength help, for example, to verify biomechanical models based on the nanocomposite structure of bone. They may also shed new light on bone diseases such as osteoporosis or osteogenesis imperfecta.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3