Assessing Structure-Property Relations of Diseased Tissues Using Nanoindentation and FTIR

Author:

Ebenstein Donna M.,Chapman Joan M.,Li Cheng,Saloner David,Rapp Joseph,Pruitt Lisa A.

Abstract

ABSTRACTDisease processes are often associated with changes in tissue composition. For example, in atherosclerosis lipid and calcification are often found in the artery wall, whereas in healthy arteries the tissue microstructure is dominated by highly organized collagen. Such variations in composition likely result in changes in the material properties of the tissue. However, this relationship has not been fully investigated in atherosclerotic vessels. Using a combination of nanoindentation and spectroscopic techniques, our goal was to assess how changes in tissue composition affect the tissue's mechanical properties. Fourier Transform Infrared Spectroscopy (FTIR) was used to assess the biochemical composition of the tissue samples, such as the lipid and calcium content of fibrous tissues in diseased arteries. Nanoindentation was used to measure the local mechanical properties of the same tissue samples. This information was then correlated by position in the sample to assess the contributions of different constituents to the overall structure-property relations of these tissues.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3