Advanced in vivo fluorescence microscopy of neural electronic interface

Author:

Yang Qianru,Cui X. TracyORCID

Abstract

AbstractNeuroelectronic devices are essential tools in neuroscience research, diagnosis, and/or treatment of neurological diseases, as well as in neuro-prosthetics and brain–computer interfaces. Despite a long history of application, neuroelectronic devices are still facing challenges of unsatisfactory chronic stability and a lack of understanding of cellular mechanisms for recording and stimulation. To improve the information transfer between the neural tissue and electronic devices, a comprehensive understanding of the biological activities around the neural electrode is critical. In vivo fluorescent microscopy technologies are rapidly developing and have revolutionized our understanding of cellular dynamics in response to neural interfacing materials. Here, we will provide an overview of the in vivo fluorescence microscopy systems and imaging configurations for studying the neural electronic interface, as well as recent findings in biological mechanisms learned using these advanced optical imaging modalities. Finally, we will discuss the current challenges and future directions. Graphical abstract

Funder

National Institute of Neurological Disorders and Stroke

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3