Author:
Chen I-Cherng,Chen Teng-Ming
Abstract
The effects of boron addition on the microstructure and afterglow properties of the long-phosphorescent SrAl2O4:Eu2+,Dy3+ (SAED), synthesized via a novel sol-gel route, were systematically investigated. Significant improvement on luminescence intensity and the lengthening of afterglow persistent time in boron-added SAED (BSAED) phases were observed, as compared to those without boron addition and commercial phosphors. Typical bluish-green emissions attributed to the doublet phosphorescence with wavelengths peaking at 412 and 501 nm for BSAED phase and 398 and 486 nm for the pristine SAED phase were observed. Afterglow with wavelengths peaking at 403 and 485 nm was observed for BSAED phase, whereas that with wavelengths peaking at 486.5 nm was found for the pristine SAED phase, as indicated by time-dependent afterglow decay profiles. Results from scanning electron microscopic morphological studies were used to investigate the modification of microstructure of the BSAED phases.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
93 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献