Solid-state foaming of titanium by superplastic expansion of argon-filled pores

Author:

Davis N. G.,Teisen J.,Schuh C.,Dunand D. C.

Abstract

Solid-state foaming of commercial purity titanium was achieved by hot-isostatic pressing of titanium powders in the presence of argon, followed by expansion of the resulting high-pressure argon bubbles at ambient pressure and elevated temperature. The foaming step was performed under isothermal conditions or during thermal cycling around the α/β allotropic temperature of titanium. Such thermal cycling is known to induce transformation superplasticity (TSP) in bulk titanium due to the complex superposition of internal transformation stresses and an external biasing stress; TSP was found to be active during foaming, where the deviatoric biasing stress was provided by the internal pore pressure. As compared to isothermal control experiments where foam expansion occurred by creep only, TSP foaming under thermal cycling conditions led to significantly higher terminal porosity (41% as compared to 27%). The foaming rates were also higher for the TSP case before pore growth ceased. Additionally, foaming experiments were conducted under an externally applied uniaxial tensile stress of 1 MPa. This procedure resulted in foaming kinetics and porosities similar to those achieved without an external stress and, for the TSP case, led to high aspect ratio pores elongated in the direction of the applied external stress.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3