Robust Design of Suspension System with Polynomial Chaos Expansion and Machine Learning

Author:

Gao H.1,Jézéque L.2,Cabrol E.3,Vitry B.3

Affiliation:

1. Ecole Centrale de Lyon; Renault SAS

2. Ecole Centrale de Lyon

3. Renault SAS

Abstract

During the early development of a new vehicle project, the uncertainty of parameters should be taken into consideration because the design may be perturbed due to real components’ complexity and manufacturing tolerances. Thus, the numerical validation of critical suspension specifications, such as durability and ride comfort should be carried out with random factors. In this article a multi-objective optimization methodology is proposed which involves the specification’s robustness as one of the optimization objectives. To predict the output variation from a given set of uncertain-but-bounded parameters proposed by optimization iterations, an adaptive chaos polynomial expansion (PCE) is applied to combine a local design of experiments with global response surfaces. Furthermore, in order to reduce the additional tests required for PCE construction, a machine learning algorithm based on inter-design correlation matrix firstly classifies the current design points through data mining and clustering. Then it learns how to predict the robustness of future optimized solutions with no extra simulations. At the end of the optimization, a Pareto front between specifications and their robustness can be obtained which represents the best compromises among objectives. The optimum set on the front is classified and can serve as a reference for future design. An example of a quarter car model has been tested for which the target is to optimize the global durability based on real road excitations. The statistical distribution of the parameters such as the trajectories and speeds is also taken into account. The result shows the natural incompatibility between the durability of the chassis and the robustness of this durability. Here the term robustness does not mean “strength”, but means that the performance is less sensitive to perturbations. In addition, a stochastic sampling verifies the good robustness prediction of PCE method and machine learning, based on a greatly reduced number of tests. This example demonstrates the effectiveness of the approach, in particular its ability to save computational costs for full vehicle simulation.

Publisher

Belarusian National Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3