Artificial Intelligence for the Estimation of Visual Acuity Using Multi-Source Anterior Segment Optical Coherence Tomographic Images in Senile Cataract

Author:

Ahn Hyunmin,Jun Ikhyun,Seo Kyoung Yul,Kim Eung Kweon,Kim Tae-im

Abstract

PurposeTo investigate an artificial intelligence (AI) model performance using multi-source anterior segment optical coherence tomographic (OCT) images in estimating the preoperative best-corrected visual acuity (BCVA) in patients with senile cataract.DesignRetrospective, cross-instrument validation study.SubjectsA total of 2,332 anterior segment images obtained using swept-source OCT, optical biometry for intraocular lens calculation, and a femtosecond laser platform in patients with senile cataract and postoperative BCVA ≥ 0.0 logMAR were included in the training/validation dataset. A total of 1,002 images obtained using optical biometry and another femtosecond laser platform in patients who underwent cataract surgery in 2021 were used for the test dataset.MethodsAI modeling was based on an ensemble model of Inception-v4 and ResNet. The BCVA training/validation dataset was used for model training. The model performance was evaluated using the test dataset. Analysis of absolute error (AE) was performed by comparing the difference between true preoperative BCVA and estimated preoperative BCVA, as ≥0.1 logMAR (AE≥0.1) or <0.1 logMAR (AE<0.1). AE≥0.1was classified into underestimation and overestimation groups based on the logMAR scale.Outcome MeasurementsMean absolute error (MAE), root mean square error (RMSE), mean percentage error (MPE), and correlation coefficient between true preoperative BCVA and estimated preoperative BCVA.ResultsThe test dataset MAE, RMSE, and MPE were 0.050 ± 0.130 logMAR, 0.140 ± 0.134 logMAR, and 1.3 ± 13.9%, respectively. The correlation coefficient was 0.969 (p< 0.001). The percentage of cases with AE≥0.1was 8.4%. The incidence of postoperative BCVA > 0.1 was 21.4% in the AE≥0.1group, of which 88.9% were in the underestimation group. The incidence of vision-impairing disease in the underestimation group was 95.7%. Preoperative corneal astigmatism and lens thickness were higher, and nucleus cataract was more severe (p< 0.001, 0.007, and 0.024, respectively) in AE≥0.1than that in AE<0.1. The longer the axial length and the more severe the cortical/posterior subcapsular opacity, the better the estimated BCVA than the true BCVA.ConclusionsThe AI model achieved high-level visual acuity estimation in patients with senile cataract. This quantification method encompassed both visual acuity and cataract severity of OCT image, which are the main indications for cataract surgery, showing the potential to objectively evaluate cataract severity.

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3