Deep learning-based estimation of axial length using macular optical coherence tomography images

Author:

Liu Jing,Li Hui,Zhou You,Zhang Yue,Song Shuang,Gu Xiaoya,Xu Jingjing,Yu Xiaobing

Abstract

BackgroundThis study aimed to develop deep learning models using macular optical coherence tomography (OCT) images to estimate axial lengths (ALs) in eyes without maculopathy.MethodsA total of 2,664 macular OCT images from 444 patients’ eyes without maculopathy, who visited Beijing Hospital between March 2019 and October 2021, were included. The dataset was divided into training, validation, and testing sets with a ratio of 6:2:2. Three pre-trained models (ResNet 18, ResNet 50, and ViT) were developed for binary classification (AL ≥ 26 mm) and regression task. Ten-fold cross-validation was performed, and Grad-CAM analysis was employed to visualize AL-related macular features. Additionally, retinal thickness measurements were used to predict AL by linear and logistic regression models.ResultsResNet 50 achieved an accuracy of 0.872 (95% Confidence Interval [CI], 0.840–0.899), with high sensitivity of 0.804 (95% CI, 0.728–0.867) and specificity of 0.895 (95% CI, 0.861–0.923). The mean absolute error for AL prediction was 0.83 mm (95% CI, 0.72–0.95 mm). The best AUC, and accuracy of AL estimation using macular OCT images (0.929, 87.2%) was superior to using retinal thickness measurements alone (0.747, 77.8%). AL-related macular features were on the fovea and adjacent regions.ConclusionOCT images can be effectively utilized for estimating AL with good performance via deep learning. The AL-related macular features exhibit a localized pattern in the macula, rather than continuous alterations throughout the entire region. These findings can lay the foundation for future research in the pathogenesis of AL-related maculopathy.

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3