A bibliometric analysis of 16,826 triple-negative breast cancer publications using multiple machine learning algorithms: Progress in the past 17 years

Author:

Wang Kangtao,Zheng Chanjuan,Xue Lian,Deng Dexin,Zeng Liang,Li Ming,Deng Xiyun

Abstract

BackgroundTriple-negative breast cancer (TNBC) is proposed at the beginning of this century, which is still the most challenging breast cancer subtype due to its aggressive behavior, including early relapse, metastatic spread, and poor survival. This study uses machine learning methods to explore the current research status and deficiencies from a macro perspective on TNBC publications.MethodsPubMed publications under “triple-negative breast cancer” were searched and downloaded between January 2005 and 2022. R and Python extracted MeSH terms, geographic information, and other abstracts from metadata. The Latent Dirichlet Allocation (LDA) algorithm was applied to identify specific research topics. The Louvain algorithm established a topic network, identifying the topic’s relationship.ResultsA total of 16,826 publications were identified, with an average annual growth rate of 74.7%. Ninety-eight countries and regions in the world participated in TNBC research. Molecular pathogenesis and medication are most studied in TNBC research. The publications mainly focused on three aspects: Therapeutic target research, Prognostic research, and Mechanism research. The algorithm and citation suggested that TNBC research is based on technology that advances TNBC subtyping, new drug development, and clinical trials.ConclusionThis study quantitatively analyzes the current status of TNBC research from a macro perspective and will aid in redirecting basic and clinical research toward a better outcome for TNBC. Therapeutic target research and Nanoparticle research are the present research focus. There may be a lack of research on TNBC from a patient perspective, health economics, and end-of-life care perspectives. The research direction of TNBC may require the intervention of new technologies.

Funder

China Scholarship Council

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3