Machine learning-based risk prediction model for canine myxomatous mitral valve disease using electronic health record data

Author:

Kim Yunji,Kim Jaejin,Kim Sehoon,Youn Hwayoung,Choi Jihye,Seo Kyoungwon

Abstract

IntroductionMyxomatous mitral valve disease (MMVD) is the most common cause of heart failure in dogs, and assessing the risk of heart failure in dogs with MMVD is often challenging. Machine learning applied to electronic health records (EHRs) is an effective tool for predicting prognosis in the medical field. This study aimed to develop machine learning-based heart failure risk prediction models for dogs with MMVD using a dataset of EHRs.MethodsA total of 143 dogs with MMVD between May 2018 and May 2022. Complete medical records were reviewed for all patients. Demographic data, radiographic measurements, echocardiographic values, and laboratory results were obtained from the clinical database. Four machine-learning algorithms (random forest, K-nearest neighbors, naïve Bayes, support vector machine) were used to develop risk prediction models. Model performance was represented by plotting the receiver operating characteristic (ROC) curve and calculating the area under the curve (AUC). The best-performing model was chosen for the feature-ranking process.ResultsThe random forest model showed superior performance to the other models (AUC = 0.88), while the performance of the K-nearest neighbors model showed the lowest performance (AUC = 0.69). The top three models showed excellent performance (AUC ≥ 0.8). According to the random forest algorithm’s feature ranking, echocardiographic and radiographic variables had the highest predictive values for heart failure, followed by packed cell volume (PCV) and respiratory rates. Among the electrolyte variables, chloride had the highest predictive value for heart failure.DiscussionThese machine-learning models will enable clinicians to support decision-making in estimating the prognosis of patients with MMVD.

Funder

Seoul National University

Publisher

Frontiers Media SA

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3