Study on the mass transfer of SO2 in ammonia-based desulfurization process

Author:

Yang Guohua,Wu Di,Gou Yuanbo,Dong Yiyuan,Jiang Jin,Chen Yafen,Zhang Ming,Song Ci,Jiang Jiankang,Jia Yong

Abstract

The coal hydrogen production process requires high-temperature steam as a reactant. Coal-fired boilers are usually used to provide high-temperature steam. The ammonia-based desulphurization process is an effective technology to remove SO2 in the coal-fired flue gas. However, the mass transfer coefficient of SO2 in such an engineered process is not readily available in the literature. In this paper, experiments were carried out to investigate the mass transfer process of SO2 absorption. Combing calculating the air and liquid contact area of the droplet and liquid membrane on the tower wall, the mass transfer coefficient contain parameters pH, gas flue rate and liquid to gas ratio was proposed. The comparison results show that the calculated SO2 mass transfer rate agrees well with the measured data. The relative error of the calculated and experimental values was less than ±20%. This proposed mass transfer coefficient appears to be beneficial for the design and operation of ammonia-based desulfurization FGD system.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference24 articles.

1. Scrubbing of sulphur dioxide in a dual-flow scrubber;Bandyopadhay;J. India. Assoc. Environ. Manage.,1998

2. Process simulation of sulphur dioxide abatement with hydrogen peroxide solutions in a packed column;Colle;Chem. Eng. Res. Des.,2005

3. Gas-liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia-based wet flue gas desulfurization;Gao;Appl. Energy,2010

4. Temperature impact on SO2 removal efficiency by ammonia gas scrubbing;He;Energy Convers. Manag.,2003

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3