Comparative study on the dynamic response of an out-of-plane gradient bionic sandwich circular plate under two types of impact loading

Author:

Wang Hairen,Lei Jianyin,Chen Junfei,Li Yugen,Peng Jun,Ma Xiaoli

Abstract

Out-of-face gradient sandwich structures have been widely studied for their excellent impact resistance. One uniform and two out-of-plane gradient cores are proposed based on the bionic structure of Royal Water Lily, and the midspan deflection of the back panel and the energy absorption of the out-of-plane gradient sandwich structures under various blast loads are studied. Two frequently adopted methods of explosive loading are applied to the sandwich panels, and the responses are contrasted for the loads applied as a time-dependent pressure history versus imposition of the initial velocity. The effect of the fluid–structure interaction is considered in the blast impulsion, and the dynamic responses of the sandwich structures with different out-of-plane density arrangements are analyzed under two loading approaches. Results show that the energy absorption of the core layer under the prescribed velocity approach is approximately 3–5 times that of the applied pressure approach, while the back panel deflections of different out-of-plane gradient sandwiches are similar. There are significant differences in the deformation mechanisms of structures under these two types of impact loads. Under the same type of impact load, the core compression process of the out-of-plane positive gradient sandwich panel is decoupled from the whole tensile bending deformation process of the structure, whereas the core compression process of the out-of-plane negative gradient sandwich panel is strongly coupled with the whole tensile bending deformation process of the structure. The related research will lay the foundation for an in-depth understanding of the theoretical study of the impact of out-of-face gradient sandwich structures.

Funder

National Natural Science Foundation of China

Education Department of Shaanxi Province

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3