Predicting environmental biodegradability using initial rates: mineralization of cellulose, guar and their semisynthetic derivatives in wastewater and soil

Author:

Hart-Cooper William M.,Kalla Nabeel,Klamczynski Artur,Torres Lennard,Glenn Gregory M.,Cunniffe Julia,Johnson Kaj,Orts William J.

Abstract

Microplastic pollution is a growing concern, and natural materials are being increasingly sought as plastic alternatives. Semisynthetic biopolymers occupy a grey area between natural and synthetic materials and are often presented as green alternatives to conventional plastic. They can be water-soluble or insoluble, and are ubiquitous in commercial products as thickeners, films, filters, viscosity modifiers and coatings. This work compares the mineralization kinetics of cellulose, guar and several of their commercialized derivatives using a simple pseudo first-order kinetic model to extrapolate half-lives and lifetimes, while identifying the levers that influence the mineralization rates of these ubiquitous materials. Industrial composting rates were consistently faster than those of wastewater. While partially substituted biopolymers exhibited measurable degradation, kinetic analysis revealed this effect could be entirely accounted for by the fraction of unsubstituted biopolymer. Surprisingly, the initial rates of highly substituted biopolymers exhibited persistence on par with conventional plastics over the experimental durations studied.

Funder

Agricultural Research Service

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3