The impact of compression and confinement in tumor growth and progression: emerging concepts in cancer mechanobiology

Author:

Johnson Allison McKenzie,Froman-Glover Charles,Mistry Akshitkumar,Yaddanapudi Kavitha,Chen Joseph

Abstract

Cancer is one of the deadliest diseases despite aggressive therapeutics. This is due in part to the evolving tumor microenvironment (TME), which provide tumor supportive cues that promote tumor adaptation and progression. Emerging studies highlight the significant role of the biophysical characteristics in the TME in modulating all aspects of cancer aggressive and spread. With the advance of bioengineering platforms, deeper investigations into the impact of these biophysical features on cancer progression are being conducted with a growing appreciation of the intratumoral compression that underlie many of the biophysical changes. Intratumoral compression emerges early in tumor development and increases in magnitude as the tumor rapidly expands against itself and its surrounding tissue. This stress has effects on both the cancer cells and biophysical aspects of the TME, including hypoxia, shear stress, extracellular matrix (ECM) remodeling, and substrate stiffness. This creates a physically dense, pro-malignant environment that can both promote metastatic phenotypes and spread but also present biophysical barriers for immune cell infiltration. This review will analyze the effect of compressive stress on the TME, cancer cells, and on confined migration of cancer and immune populations.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3