Synthesis of Cu/Co-hybrid MOF as a multifunctional porous compound in catalytic applications, synthesis of new nanofibers, and antimicrobial and cytotoxicity agents

Author:

Asiri Mohammed,Jawad BahrAluloom Yamamah,Abdullateef Alzubaidi Mazin,Mourad Mohammed Ibrahim,Suliman Muath,Ramzy Muhammad Eman,Abed Ahmed S.,Abodi Ali Fattma,Hadrawi Salema K.,Alsalamy Ali H.,Alwave Marim

Abstract

Several biological properties of metal–organic frameworks (MOFs) and fiber compounds have been reported, and combinations of these structures can have unique properties. In this study, copper-containing and cobalt-containing MOF nanostructures were synthesized by the ultrasonic technique. Then, novel Cu/Co-hybrid MOF nanostructures were synthesized using the ultrasonic method. Synthesized Cu/Co-hybrid MOF nanostructures were used as a new and efficient recyclable catalyst in the synthesis of pyrano[2,3-c]pyrazole derivatives using the four-component reaction of phenylhydrazine, ethyl acetoacetate, malononitrile, and aldehyde. In the following, novel Cu/Co-hybrid MOF/PVA (poly vinyl alcohol) fiber nanostructures were synthesized by electrospinning and using Cu/Co-hybrid MOF nanostructures and PVA. The structures of the Cu/Co-hybrid MOF nanostructures and the Cu/Co-hybrid MOF/PVA fiber nanostructures were identified and confirmed using BET, TGA, FTIR, SEM, and XRD. In biological studies, the antibacterial, antifungal, and cytotoxicity activities of Cu/Co-hybrid MOF and Cu/Co-hybrid MOF/PVA fiber nanostructures were evaluated. In investigating the catalytic activity of Cu/Co-hybrid MOF, pyrano[2,3-c]pyrazole derivatives were synthesized with higher efficiency and less time than previously reported methods. High antibacterial (against gram-negative and gram-positive strains) and antifungal properties of synthesized Cu/Co-hybrid MOF nanostructures and Cu/Co-hybrid MOF/PVA fiber nanostructures were observed (MIC between 16 and 256 μg/mL), which were higher than some commercial drugs. In the investigation of cytotoxicity activity, the effectiveness on breast cancer cells was studied. The maximum cell proliferation and viability for Cu/Co-hybrid MOF and Cu/Co-hybrid MOF/PVA fiber nanostructures were 38% and 38% higher than the control in a concentration of 200 μg/mL after 48 h. The high catalytic and biological properties of the synthesized nanoparticles can be attributed to the presence of nano-sized bioactive metals and their high specific surface area. The significant physical-chemical properties obtained for synthesized nanoparticles in this study can be related to the desirable synthesis methods, the development of materials with high purity, and the incorporation of hybrid compounds into the nanostructures.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3