Composites of CoFe2O4/Graphene oxide/Kaolinite for adsorption of lead ion from aqueous solution

Author:

Daniel Reta Yared,Desissa Temesgen Debelo

Abstract

In this work, we established composites from kaolinite (K), CoFe2O4 (CF), and graphene oxide (GO) for the adsorption of the lead ion (Pb (II)). Initially, a composite of CF-GO was synthesized by hydrothermal method using cellulose bio-template extracted from false banana. The weight ratio of GO varied from 0.20 to 0.30, i.e., (1-x) CF/(x)GO (x = 0.20, 0.25, 0.30). The sample with x = 0.30, i.e., CF-0.3GO exhibited a better adsorption capacity of about 23.6 mg g−1 from the binary composite samples at the initial Pb concentration of 50 mg L−1. Then, the contact time and adsorbent dosage of CF-0.3GO were optimized with the corresponding results of 90 min and 1.2 g L−1, respectively. A ternary composite was formulated from the sample of CF-0.3GO and Kaolinite (K) with the nominal composition of (1-y)K/(y)(CF-0.3GO), where y = 0.30, 0.45, 0.60, and 0.75. Among the ternary composites, the sample with a composition of 0.25K/0.75(CF0-0.3GO) showed the best adsorption capacity of about 4.2 mg g−1 at the initial Pb concentration of 10 mg L−1, and this sample was subsequently selected for further studies. The synthesized composites were characterized using powder X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), and Differential thermogravimetric analysis (TGA-DTA), Brunauer-Emmett-Teller (BET), respectively, to determine phase purity, the particles morphology, functional groups, thermal stability, and surface area and pore volume of the of samples. Atomic absorption spectroscopy (AAS) was used to determine the adsorption capacity of samples. The effect of pH ranging from 2 to 10 was investigated for the present composite. At pH of 4, the adsorption capacity and removal efficiency changed significantly, with the corresponding results of 6.62 mg g−1 and 99 %, respectively, and becomes constant. Adsorption isotherms and kinetics were investigated for a composite with a composition of 0.25K/0.75 (CF-0.3GO). The Freundlich isotherm model best fits the adsorption isotherm, with a correlation coefficient of 0.93, and the kinetic behavior followed Pseudo-second-order adsorption kinetics. Finally, the synthesized composite was stable for three-round tests toward the Pb(II) removal. Therefore, the results of this study indicate that the composites of CoFe2O4/Graphene oxide/Kaolinite could be a potential candidate for the removal of Pb (II) ions.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3