Application of chitosan-based materials in surgical or postoperative hemostasis

Author:

Xia Yuanliang,Yang Ruohan,Wang Hengyi,Li Yuehong,Fu Changfeng

Abstract

Uncontrolled bleeding from trauma or surgery remains an important factor affecting the survival and prognosis of surgical patients. Failure to timeously stop bleeding will not only prolong the operative time but also threaten the patient’s life. Timely hemostasis after bleeding has become the most concerned event for surgeons. At present, the most commonly used hemostasis methods in the operating room include ligation of blood vessels, electrocautery, and gauze compression to stop bleeding. However, These hemostatic methods do great harm to surrounding tissues while achieving hemostasis. Based on tissue engineering repair strategies, the use of natural polymer materials as hemostatic agents has achieved clinical success. Gelatin sponge and cellulose gauze have been used clinically with good results. However, gelatin sponges are very expensive and place enormous financial pressure on patients. Therefore, there is an urgent need for new hemostatic materials for surgical hemostasis. Chitosan is a natural polysaccharide with biocompatibility and biodegradability, which plays an important role in tissue engineering and regenerative medicine. Chitosan gauze has been proven to have good hemostatic effects. The positive charge on the surface of chitosan can adsorb red blood cells and platelets at the bleeding site to form platelet thrombosis. However, chitosan is not easily soluble in water and has poor adsorption, which makes it a weak local hemostatic agent. Therefore, it is important to improve chitosan-based hemostatic material such that it l has an excellent hemostatic effect. In this review, we introduce the physiological coagulation process and discuss the physicochemical properties of chitosan and its role in hemostasis. Furthermore, we discuss the advantages and disadvantages of chitosan-based hemostatic materials. Finally, we summarize and discuss chitosan-based hemostatic materials.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3