Exploring salinity adaptation in teleost fish, focusing on omics perspectives on osmoregulation and gut microbiota

Author:

Mkulo Evodia Moses,Iddrisu Lukman,Yohana Mpwaga Alatwinusa,Zheng Anna,Zhong Jiahao,Jin Minxuan,Danso Felix,Wang Linjuan,Zhang Huijuan,Tang Baogui,Zhou Hui,Amoah Kwaku,Huang Jiansheng,Wang Bei,Wang Zhongliang

Abstract

Teleosts are the most varied vertebrates. They inhabit various environments and are crucial to global fisheries, making them a focus of research using advanced omics approaches. These studies provide insights into the genetic factors, environmental adaptability, disease resistance, and metabolic processes, aiding aquaculture sustainability. Acclimation to salinity stress is complex, influenced by genetics and the environment. Although some species tolerate varying salinity levels, rapid shifts beyond their optimal tolerance cause stress. Euryhaline species experience stress at extreme salinities, whereas stenohaline species are sensitive to minor changes. Osmoregulation maintains homeostasis at varying salinities through acclimation in the intestine, kidney, and gills, ensuring survival in changing environments. Studies on gut microbiota and metabolomics have revealed how teleosts cope with salinity stress. This review delves into the acclimatization processes through transcriptomic, metabolomic, and gut microbiome analyses, which have shed light on the complex mechanisms that teleosts have evolved to cope with salinity stress. Transcriptomic analyses have identified key ion transport, osmoregulation, and stress response genes essential for adaptation, facilitating cellular adjustments and maintaining osmotic balance across habitats. Studies have revealed significant metabolite changes in energy production and osmolyte synthesis during stress, indicating metabolic reorganization for osmoregulation. Gut microbiota analysis highlights microbial diversity in regulating osmoregulatory functions, emphasizing microbiota’s role in resilience. Although research on interactions between salinity, growth conditions, and gut microbiota in teleosts is limited, findings suggest a vital relationship that warrants further study. Understanding these mechanisms is essential for improving fish health and enabling sustainable aquaculture management under environmental fluctuations.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3