Tidal variation modulates the dissolved silicate behavior and exchange flux across the semi-enclosed bay‐coastal water continuum, China

Author:

Zhang Peng,Xie Jiale,Zhang Jibiao,Fu Miaojian,Luo Weisheng,Cheng Mingyue

Abstract

Coastal water is the key transition zone for the circulation and transport of nutrients. Their role in transporting nutrients is important to understanding global dissolved silicate (DSi) cycles and sources of nutrients supporting the biological pump and ocean carbon cycle. However, the understanding of controlling DSi exchange flux between the semi-enclosed bay and coastal water was still scarcely due to limitations in continuous observation. In this study, we conducted continuous investigations during spring tide (ST) and neap tide (NT) in 2021 in Shuidong Bay (SDB), China, to explore the impacts of different tidal cycles on DSi in SDB and the fluxes across SDB and South China Sea (SCS) coastal water. The findings demonstrated that there were significant differences in DSi concentrations and nutrients ratios between ST and NT in S1 station (P < 0.05). In addition, the DSi concentrations were 32.01 ± 27.21 μmol/L and 51.48 ± 48.44 μmol/L in ST and NT, respectively. Besides, the net export of DSi from SDB to SCS was 0.18 t throughout the entire early of autumn tidal cycle, suggesting SDB was the source of DSi, and its behavior across the semi-enclosed bay‐coastal water continuum was largely controlled by tidal characteristics (tidal height, flow velocity), water physicochemical parameters (salinity, pH), biological uptake and terrestrial sources input. SDB in ST has higher proportions of DSi: DIN (dissolved inorganic nitrogen) (1.49 ± 1.28) and DSi: DIP (dissolved inorganic phosphorus) (58.6 ± 43.73) compared with NT, DSi: DIN and DSi: DIP for the NT period were 1.45 ± 1.15 and 43.99 ± 28.59, indicating that phosphorus (P) is the limiting trophic factor for SDB. The tidal cycle in SDB would alter the DSi stoichiometry and mitigated the impact of eutrophication caused by terrestrial sources. This study provides new insights in the Si tidal cycling across the semi-enclosed bay‐coastal water continuum, which was implications for understanding DSi biogeochemical process and primary production dynamics in coastal water.

Funder

Guangdong Science and Technology Department

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3