Effects of the reduced air-sea drag coefficient in high winds on the rapid intensification of tropical cyclones and bimodality of the lifetime maximum intensity

Author:

Kim Sung-Hun,Kang Hyoun-Woo,Moon Il-Ju,Kang Sok Kuh,Chu Pao-Shin

Abstract

The air-sea drag coefficient (Cd) is closely related to tropical cyclone (TC) intensification. Several recent studies suggested that the Cd decreases in winds greater than 33 m s−1. The effects of Cd reduction in high winds on TC intensity, especially rapid intensification (RI) and the lifetime maximum intensity (LMI) distribution, were investigated by analyzing the wind-dependent Cd-based ocean vertical mixing and the energy budget. In addition, to consider the uncertainty of the Cd in extreme winds (above 50 m s−1), three types of Cd fitting that decrease after 33 m s−1, which show different trends after 50 m s−1 (increase, flat, and decrease), were adopted. The results were then compared with those for the control fitting (saturated after 33 m s−1) and show that the reduced Cd in high winds drives an increase in net energy by reducing frictional dissipation and suppressing sea surface cooling. This extra energy prevents the TC from achieving a steady-state, causing the bimodality of simulated maximum potential intensity. The observed steady-state probability (intensification rate and RI probability) in the Cd reduced wind range were significantly lower (higher) than in the others. These results suggest that Cd reduction might potentially induce the RI and LMI bimodality.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3