Novel Interactions Between Phytoplankton and Bacteria Shape Microbial Seasonal Dynamics in Coastal Ocean Waters

Author:

Arandia-Gorostidi Nestor,Krabberød Anders K.,Logares Ramiro,Deutschmann Ina Maria,Scharek Renate,Morán Xosé Anxelu G.,González Felipe,Alonso-Sáez Laura

Abstract

Trophic interactions between marine phytoplankton and heterotrophic bacteria are at the base of the biogeochemical carbon cycling in the ocean. However, the specific interactions taking place between phytoplankton and bacterial taxa remain largely unexplored, particularly out of phytoplankton blooming events. Here, we applied network analysis to a 3.5-year time-series dataset to assess the specific associations between different phytoplankton and bacterial taxa along the seasonal scale, distinguishing between free-living and particle-attached bacteria. Using a newly developed network post-analysis technique we removed bacteria-phytoplankton correlations that were primarily driven by environmental parameters, to detect potential biotic interactions. Our results indicate that phytoplankton dynamics may be a strong driver of the inter-annual variability in bacterial community composition. We found the highest abundance of specific bacteria-phytoplankton associations in the particle-attached fraction, indicating a tighter bacteria-phytoplankton association than in the free-living fraction. In the particle-associated fraction we unveiled novel potential associations such as the one between Planctomycetes taxa and the diatom Leptocylindrus spp. Consistent correlations were also found between free-living bacterial taxa and different diatoms, including novel associations such as those between SAR11 with Naviculales diatom order, and between Actinobacteria and Cylindrotheca spp. We also confirmed previously known associations between Rhodobacteraceae and Thalassiosira spp. Our results expand our view on bacteria-phytoplankton associations, suggesting that taxa-specific interactions may largely impact the seasonal dynamics of heterotrophic bacterial communities.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3