Comparing the underwater soundscape of the Hawaiian Islands Humpback Whale National Marine Sanctuary and potential influences of the COVID-19 pandemic

Author:

Madrigal Brijonnay C.,Kügler Anke,Zang Eden J.,Lammers Marc O.,Hatch Leila T.,Pacini Aude F.

Abstract

Passive acoustic monitoring is an effective technique for long-term monitoring of the soundscape in marine protected areas. Ocean noise is a key concern for the U.S. Office of National Marine Sanctuaries and has been identified as a research priority. The Sanctuary Soundscape Monitoring Project (“SanctSound”) was implemented to support efforts to address ocean noise across seven U.S. sanctuaries using a comprehensive and standardized approach. In this study, acoustic recordings were collected in the Hawaiian Islands Humpback Whale National Marine Sanctuary during the humpback whale seasons (November-May) from 2018-2022. Data encompassed 14 deployments across four sites in the main Hawaiian Islands: Hawaiʻi, Maui, O’ahu, and Kauaʻi. The soundscape was dominated by biological sources, most prominently the seasonal detection of humpback whale song. Third octave level monthly medians ranged from 70.4-105 dB re 1 µPa across sites with distinct peaks from January to April particularly at both Hawaiʻi and Maui sites. Overall, we reported relatively low vessel detection rates, with Maui having the highest daily average of vessel detections (x = 19.16). No COVID-19 impact could be observed acoustically using soundscape metrics which was likely due to the dominance of humpback whale chorusing. However, vessel detections and AIS data revealed a reduction in vessel activity after the onset of the pandemic at the Maui and Hawaiʻi sites. This study demonstrates that standardized metrics are a useful tool for obtaining long-term, baseline soundscape levels to understand the various contributions to the underwater soundscape and potential changes within marine protected areas in Hawaiʻi.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3