Do Gray Whales Count Calories? Comparing Energetic Values of Gray Whale Prey Across Two Different Feeding Grounds in the Eastern North Pacific

Author:

Hildebrand Lisa,Bernard Kim S.,Torres Leigh G.

Abstract

Predators must consume enough prey to support costly events, such as reproduction. Meeting high energetic requirements is particularly challenging for migrating baleen whales as their feeding seasons are typically restricted to a limited temporal window and marine prey are notoriously patchy. We assessed the energetic value of the six most common nearshore zooplankton species collected within the Oregon, United States range of the Pacific Coast Feeding Group (PCFG) gray whale (Eschrichtius robustus) feeding grounds, and compared these results to the energetic value of the predominant amphipod species fed on by Eastern North Pacific (ENP) gray whales in the Arctic. Energetic values of Oregon zooplankton differed significantly between species (Kruskal–Wallis χ2 = 123.38, df = 5, p < 0.0001), with Dungeness crab (Cancer magister) megalopae displaying the highest mean caloric content of all tested species (4.21 ± 1.27 kJ g– 1). This value, as well as the mean energetic value of the mysid Neomysis rayii (2.42 ± 1.06 kJ g– 1), are higher than the mean caloric content of Ampelisca macrocephala, the predominant Arctic amphipod. Extrapolations of these results to daily energetic requirements of gray whales indicate that lactating and pregnant gray whales feeding in the PCFG range would require between 0.7–1.03 and 0.22–0.33 metric tons of prey less per day if they fed on Dungeness crab megalopae or N. rayii, respectively, than a whale feeding on A. macrocephala in the Arctic. Yet, these results do not account for differences in availability of these prey species to foraging gray whales. We therefore suggest that other factors, such as prey density, energetic costs of feeding, or natal philopatry and foraging site fidelity play a role in the differences in population sizes between the PCFG and ENP gray whales. Climate change is implicated in causing reduced body condition and increased mortality of both PCFG and ENP gray whales due to decreased prey availability and abundance. Therefore, improved understanding of prey dynamics in response to environmental variability in both regions is critical.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3