Image stitching and target perception for Autonomous Underwater Vehicle-collected side-scan sonar images

Author:

Zhang Zhuoyu,Wu Rundong,Li Dejun,Lin Mingwei,Xiao Sa,Lin Ri

Abstract

IntroductionAutonomous Underwater Vehicles (AUVs) are capable of independently performing underwater navigation tasks, with side-scan sonar being a primary tool for underwater detection. The integration of these two technologies enables autonomous monitoring of the marine environment.MethodsTo address the limitations of existing seabed detection methods, such as insufficient robustness and high complexity, this study proposes a comprehensive seabed detection method based on a sliding window technique. Additionally, this study introduces a sonar image stitching method that accounts for variations in image intensity and addresses challenges arising from multi-frame overlaps and gaps. Furthermore, an autonomous target perception framework based on shadow region segmentation is proposed, which not only identifies targets in side-scan sonar images but also provides target height measurements.ResultsComprehensive seabed detection method improves accuracy by 31.2% compared to the peak detection method. In experiments, the height measurement error for this method was found to be 9%.DiscussionTo validate the effectiveness of the proposed seabed detection method, sonar image stitching method, and target perception framework, comprehensive experiments were conducted in the Qingjiang area of Hubei Province. The results obtained from the lake environment demonstrated the effectiveness of the proposed methods.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3