Fatty acid profiles reveal dietary variability of a large calanoid copepod Limnocalanus macrurus in the northern Baltic Sea

Author:

von Weissenberg Ella,Ruhanen Hanna,Holopainen Minna,Käkelä Reijo,Engström-Öst Jonna

Abstract

Eutrophication, climate-induced warming, and salinity fluctuations are altering the fatty acid profiles and the availability of essential polyunsaturated fatty acids (PUFAs) in marine zooplankton communities. Limnocalanus macrurus Sars G.O., 1863 is a large calanoid copepod inhabiting the low-salinity areas in the Baltic Sea, where it is a major source of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) to commercially important fish. L. macrurus is sensitive to warming, eutrophication and hypoxia. As an opportunistic feeder, it is capable of dietary shifts, which affects its fatty acid profiles. Although much studied in boreal lakes, there are only a few studies on the fatty acid profiles of the Baltic Sea populations. This study aimed to compare the fatty acid profiles of L. macrurus in three basins of the Baltic Sea, in relation to the community fatty acids and environmental variables. We collected samples of L. macrurus and filtered plankton community for gas chromatographic fatty acid analyses in August 2021 on R/V Aranda. The nutritional quality of L. macrurus to consumers was lower in the Gulf of Finland (GoF) compared to the Gulf of Bothnia, indicated by the low levels of DHA and EPA, as well as the low n-3/n-6 ratio of PUFAs. The lower ratio of 18:1n-7 to 18:1n-9 implied higher degree of omnivory in GoF. In contrast, a diatom marker 16:1n-7 had high proportion in the Bothnian Bay. High temperatures in GoF may have restricted feeding in the upper water column, possibly forcing a shift towards cyanobacteria or seston-based diet, as interpreted from a high proportion of 18:2n-6 and 18:3n-3. We conclude that the ability of L. macrurus to utilize multiple food sources increases its resilience to environmental change, while the consequences on the nutritional quality may have further cascading effects on the food webs.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3